
Introduction

Since the industrial revolution, with the global 
greenhouse gas emissions surge, the climate has 
undergone dramatic changes. At the same time, extreme 
weather phenomena have increased annually and the 
global warming trend is more and more obvious. The 
fi fth assessment report (2013) of the Intergovernmental 

Panel on Climate Change (IPCC) pointed out that there 
is no doubt the climate system is warming. Since 1950, 
many changes observed by the climate system have been 
unprecedented over the past few decades or even thousands 
of years. From 1880 to 2012, the global mean temperature 
of sea and land surface increased linearly by 0.85ºC [1]. 
The reason is the excessive production of carbon dioxide, 
methane, and other greenhouse gases in human production 
and life, leading to a signifi cant increase in greenhouse gas 
concentrations in the global atmosphere, which exceeds 
the capacity of the Earth’s own regulation. As a result, 
global temperatures have risen signifi cantly. Human 
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activities will change the environment, which has become 
an indisputable fact.

With rapid economic development, China has made 
remarkable achievements. But the extensive economic 
growth model caused a lot of energy consumption and low 
effi ciency of energy use, resulting in a sharp rise in air 
pollution emissions – especially carbon dioxide. At present, 
China has become the world’s largest carbon emitter [2]. 
In 2009, in order to reduce greenhouse gas emissions, the 
State Council executive conference proposed a restrictive 
target of “CO2 emissions per unit of GDP in 2020 that will 
decline by 40-45% compared to that in 2005” [3].

Electric power is an indispensable high-quality energy 
for social and economic development. China’s electric 
power consumption accounting for the proportion of 
total energy consumption increased continuously: the 
proportion was only 9.53% in 1991 but it has reached 
22.56% in 2012. In addition, the CO2 emissions in 
China’s power industry accounted for 48.79% of total 
CO2 emissions [4]. Due to the restriction of the natural 
resource structure, China’s electric power production 
is dominated by thermal power. Moreover, the thermal 
power production mainly depends on coal. As we all 
know, fossil energy combustion is the culprit of large 
amounts of CO2 emissions. Therefore, in order to complete 
China’s energy-saving emission reduction targets, we 
must pay attention to the power industry’s CO2 emissions 
reduction.

Research on the driving factors of CO2 emissions 
at the international level started early and the research 
results are more abundant. A large number of quantitative 
models and statistical analysis methods are used in the 
research methods. Paul and Anne Ehrlich [5] proposed 
the IPAT equation, which indicated that the combined 
infl uences of factors such as population scale, economic 
development, and technological progress are the main 
driving factors of CO2 emissions. Dietz and Rosz [6] 
constructed the STIRPAT model, which is the random 
form of the IPAT equation. They tried to introduce more 
relevant factors and study the impact of human factors 
on the natural environment . York et al. [7] studied the 
relationship between CO2 emissions and population using 
the STIRPAT model. Ramanathan [8] employed data 
envelopment analysis (DEA) to analyze the relationship 
between CO2 emissions, gross domestic product (GDP), 
and energy consumption. Dalton et al. [9] adopted a 
population-environment-technology model (PET model) 
to conduct an empirical study of CO2 emissions. The 
results demonstrated that there was a positive correlation 
between GDP and CO2 emissions, and it is also found 
that population structure was one of the factors affecting 
CO2 emissions. Stretesky and Lynch [10] used the fi xed 
effect model to analyze data from 169 countries between 
1989 and 2003, and the results indicated a signifi cant 
relationship between U.S. exports and per capita carbon 
emissions. Through the IPAT equation, Hubacek et al. [11] 
found that population growth had no signifi cant effect on 
China’s CO2 emissions. The growing economy was the 
main driver of China’s CO2 emissions growth.

Although China’s research on CO2 emissions 
started late, in recent years there has been much fruitful 
research. Zhao and Long [12] established the Jiangsu 
CO2 emissions infl uencing factors model and utilized 
LMDI decomposition analysis of population, economy, 
and science and technology investment on the impact 
of CO2 emissions in Jiangsu. According to the LMDI 
decomposition method, Tan et al. [13] explored the 
driving factors affecting China’s carbon intensity and 
found that the power industry played an important role 
in reducing the intensity of CO2 emissions in China. 
From the perspective of China’s electricity consumption, 
Zhang [14] conducted a scenario analysis on the carbon 
emissions intensity of electricity consumption in 2020. 
The results forecasted that China’s carbon emission 
intensity is expected to decrease by 33-37% compared 
to 2007. Wang et al. [15] adopted the logarithmic mean 
weight Divisia decomposition method to construct 
the decomposition model of the per capita carbon 
emission factors in the coastal areas of Jiangsu Province. 
Shen [16] used the vector autoregressive model (VAR 
model) and the granger causality test to study the long-
term and short-term causal and dynamic relationships 
between China’s carbon emissions, economic growth, and 
energy consumption. By applying the data envelopment 
analysis (DEA) model, Lin and Fei [17] researched 
the infl uences of technologically improving on carbon 
emission reduction in China’s agriculture sector and 
indicated that the two components play a key role in 
fi nal carbon emissions performance. Using the panel data 
model, Xu and Lin [18] and He and Wang [19] suggested 
that economic growth and increase in population have a 
positive effect, and that technological improvements help 
reduce China’s CO2 emissions. 

In recent years, the  STIRPAT model has been widely 
applied by more and more researchers. Song et al. [20] 
constructed the STIRPAT model to study the impact 
of population scale, population structure, consumption 
structure, and energy intensity on CO2 emissions in China. 
Using the STIRPAT method, Zhu and Zhang [21] studied 
the relationship between population, urbanization, per 
capita GDP and CO2 emissions in Beijing. They pro-
posed the necessary measures for carbon reduction in 
Beijing and provided a reference for Beijing to achieve 
high-quality economic development in the future. All 
of the studies outlined above prove that STIRPAT is an 
effi cient model for examining the impact factors of CO2 
emissions.

Previous studies paid attention to population, 
economic, and technical levels, and seldom focused 
on power industry-related indicators. In addition, the 
STIRPAT model most widely used in studies involves 
ordinary least squares (OLS) regression, which may lead 
to unreliable regression coeffi cients. To the best of our 
knowledge, there are no reports in the literature that use 
the STIRPAT model fi tted by the ridge regression method 
to analyze the infl uencing factors of CO2 emissions of 
the whole power industry in China. Compared with other 
papers, the innovation in and contribution of this paper 
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lies in its examination of the following impact factors: 
GDP, urbanization level, industrialization level, power 
consumption effi ciency, power generation effi ciency, 
and electric power structure on the power industry’s CO2 
emissions in China. These infl uencing factors can refl ect 
the characteristics of the power industry. For instance, 
 this paper introduced two indicators – power generation 
effi ciency and power consumption effi ciency – to study 
the energy effi ciency of the electric power production side 
and demand side. Furthermore, in order to avoid multiple 
collinearity, we used the ridge regression method that 
replaced OLS regression to fi t the extended STIRPAT 
model.

Material and Methods

Estimating CO2 Emissions of 
the Power Industry

Since China has not yet announced CO2 emissions in 
the power sector, it is necessary to estimate CO2 emissions. 
Based on data on various energy consumption in the 
power industry, and their CO2 emissions factors from the 
2006 IPCC reports [22], we calculate the power industry’s 
CO2 emissions from 2000 to 2014. Then, the calculation 
method is as follows:

        (1)

…where C represents the power industry’s CO2 emissions, 
i is energy type, E refers to energy consumption, K denotes 
the average low calorifi c value, ε is the carbon content of 
the energy, and η represents to the carbon oxidation factor 
(which is usually replaced by constant 1). 

Extended STIRPAT Model

The STIRPAT model (Eq. (2)) is usually employed to 
analyze pollutant emissions factors. It was proposed by 
Dietz and Rosa [6] in 1997   as a basic:

                        (2)

The meaning of each variable is shown in Table 1.
Eq. (2) may be converted to logarithmic form:

 
  (3)

In order to study the impacts of the driving forces on 
CO2 emissions in China’s power industry, Eq. (3) can be 
rewritten as follows:

    
(4)

The defi nition of each abbreviation is shown in 
Table 2.

To further our study of the impact factors from power 
industry CO2 emissions, the STIRPAT model is expanded 
by combining urbanization, industrialization, power 
consumption effi ciency, power generation effi ciency and 
electric power structure. But, for a variety of reasons, the 
factor of population size is excluded.

Firstly, in most of the existing literature about 
infl uencing factors of CO2 emissions, urbanization and 
industrialization are indispensable indicators. Because 
China is in a stage of rapid development, there is lots 
of demand for power energy. Hence, urbanization and 
industrialization are adopted into the model of the power 
industry’s CO2 emissions. 

Secondly, since 1971 China has fully carried out family 
planning. The population growth rate slows down, so the 
infl uence of demographic changes on the power industry’s 
CO2 emissions is insignifi cant. 

Thirdly, China is the largest power generation country 
in the world. Thermal power is the major method of power 
generation in China, which makes coal the main raw 
material. Coal will be the major energy of China’s power 
industry for a long time [23]. As we all know, a large 
number of coal combustion will exacerbate CO2 emissions 
[24]. Therefore, electric power structure (EPS) factors (the 
amount of thermal power generation divided by the total 
electricity production) are applied to this study. 

Finally, the innovation of this paper is that we consider 
the power effi ciency in both the power production and 
demand sides. The power generation effi ciency on the 
production side and the power consumption effi ciency 

Variable Representative Variable Representative
a Intercept term b Elasticities of environmental impact with P
P Size of the population c Elasticities of environmental impact with A
A Country’s affl uence d Elasticities of environmental impact with T
T Technological progress e Random disturbance

Table 1. Symbols and meanings of variables.

Variable Defi nition
CO2 CO2 emissions in China’s power industry
POP Population scale
GDP Level of economic development

ENE Energy production input divided by its physical 
output

Table 2. Symbols and meanings of factors.
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on the demand side will both have a crucial impact on 
the decrease of carbon emissions in the power industry. 
Therefore, on the production side, we use power 
generation effi ciency (PGE) to represent power generation 
standard coal consumption, and the unit of PGE is gram 
per kilowatt hour. On the demand side, we adopt the GDP 
output value under the unit of power consumption to 
indicate power consumption effi ciency (PCE), and PCE is 
proxied with total GDP divided by the power consumption 
(yuan per kilowatt hour).

The extended STIRPAT model can be established as: 

   
(5)

…where CO2 represents CO2 emissions in China’s 
power industry (104 tons), GDP is the economic growth 
level, URB represents urbanization level (%), IND is the 
industrialization level (second industry GDP divided by 
total GDP), PCE represents power consumption effi ciency 
(yuan per kilowatt-hour), PGE represents power generation 
effi ciency (gram per kilowatt hour), and EPS indicates the 
electric power structure (the amount of thermal power 
generated divided by total electricity production).

Multicollinearity Test

Multicollinearity refers to the exact correlation or 
high correlation between the explanatory variables in 
the linear regression model, which makes the model 
estimates distorted or diffi cult to estimate. If there 
are serious multicollinearities between variables, the 
coeffi cients fi tted under the ordinary least squares method 
cannot be reliably guaranteed. In general, we employ the 
ordinary least squares (OLS) regression and variance 
infl ation factor (VIF) to test whether there is signifi cant 
multicollinearity between variables. If the value of the 
variance infl ation factor (VIF) is greater than 10, we 
believe that the variables have multicollinearity problems 
[25]. The larger the variance infl ation factor, the stronger 
the multicollinearity. 

Ridge Regression 

According to the studies of Wang et al. [26], we briefl y 
summarize the ridge regression method. The multiple 
linear regression equation is as follows:

                           (6)

…where X represents an n×p matrix of independent 
variables, β is a p×1 vector of unknowns, and ε notes 
an n-dimensional random vector. The least squares esti-
mate of parameter β is . When there is 
a high degree of collinearity between the independent 
variables, there are . The least squares estimator  

 may be extremely unstable, which may result in a 

lack of reasonable meaning for the parameter estimates. 
Ridge regression means that a set of positive matrix kI 
(k>0) (ridge parameters) is added to the X′X matrix, 
which can eliminate multiple collinearity and maintain 
general stability. The general form of the ridge regression 
estimation is as follows:

                     (7)

...where k is the ridge parameter. In fact, the ordinary 
least squares estimate is a special ridge regression 
estimate. When the ridge parameter k = 0, the ridge 
regression estimate (0) is actually the ordinary least 
squares estimate. Since ridge parameter k is not uniquely 
determined, the ridge regression estimation (k) obtained 
by the ridge regression method is an estimated family of 
the regression parameter β.

Data

Data Source

The sample data (2000-14) is obtained from China 
Statistical Yearbook (2001–15) [27] and China  Electric 

Fig. 1. CO2 emissions in China’s power industry (10e4 tons) 
from 2000 to 2014.

Variable Defi nition Units of 
measurement

CO2
Total CO2 emissions in the 

power industry 104 tons

GDP Per capita GDP Yuan

URB Urbanization level Percent

IND Industrialization level Percent

PCE Power-consuming effi ciency 
on the demand side Yuan per kWh

PGE Power generation effi ciency 
on the production side

Gram per 
kilowatt hour

EPS Electric power structure Percent

Table 3. Meanings and units of factors.
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Power Yearbook (2001-15) [28]. The per capita GDP is 
calculated at fi xed prices (2000 = 100). All variables are 
converted to logarithmic form to prevent heteroskedasticity. 
According to Eq. (1), we can obtain the 2000-14 CO2 
emissions in the power industry, as shown in Fig. 1. 
Table 3 shows the defi nition and unit of the variables. 
Table 4 shows the statistical description of variables.

Data Description

As shown in Fig. 2, these two indicators of GDP per 
capita and urbanization levels show a synergistic growth 

situation. Fig. 3 shows changes of industrialization 
levels and electric power structure in China from 2000 
to 2014. The electric power structure shows a fl uctuating 
characteristic, but there has been an overall downward 
trend since 2008, while industrialization levels showed 
an inverted “U-shaped” form. As we can see from 
Fig. 4, the power-consuming effi ciency on the demand 
side performed rapid growth. In addition, the power 
generation effi ciency also continuously improved, which 
was because standard coal consumption has been declining 
since 2000.

Results and Discussion

Results of Multicollinearity Test

Multicollinearity refers to the existence of a highly 
linear correlation between explanatory variables in a 
multivariate regression model. It will lead to the widening 
of the variance of the least squares parameter estimator 
and the unreasonable economic meaning of the parameter 
estimator.

Above all, each variable underwent logarithmic 
processing in order to avoid the infl uences of the 
variable’s dimension [29-30]. Furthermore, a correlation 
test of each variable was carried out by SPSS statistical 
software. It was evident from Table 5 that there were 
relatively high correlations among the variables GDP, 
URB, IND, PCE, PGE, and EPS. Therefore, it can be 
determined that there were high correlations among the 
variables.

In the next stage, the ordinary least square (OLS) 
estimation was carried out for each variable using 
SPSS. The results are shown in Table 6. It is generally 
believed that multiple collinearity is determined by OLS 
regression and variance infl ation factor (VIF) value. The 
VIF threshold is typically 10. If the VIF value is greater 
than 10, it indicates that there are multiple collinearity 
problems; otherwise it does not exist. As can be seen from 
Table 6, the VIF is much higher than 10. Besides, the 
logarithmic coeffi cient of per capita GDP and URB are as 
high as 1,179 and 795, which indicates serious multiple 
collinearity between variables. Therefore, it cannot be 
judged according to the results of ordinary least squares 

Variable Mean Std. dev. Min Max

CO2 269,531.4 99,508.57 122,296.2 412,298.5

GDP 16,021.96 6,427.102 7,816.298 26,979.31

URB 45.74020 5.984126 36.21975 54.77036

IND 39.90730 1.748807 35.86056 42.21213

PCE 8.801065 1.551674 7.176291 11.43577

PGE 330.6000 23.16648 295.0000 363.0000

EPS 80.65215 2.029716 75.24658 82.97696

Table 4. Statistical description of factors.

Fig. 2. Changes of GDP and urbanization in China from 2000 
to 2014.

Fig. 4. Changes of PGE and PCE in China from 2000 to 2014.

Fig. 3.  Changes of industrialization and EPS in China from 2000 
to 2014.
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fi tting. Only by eliminating the multicollinearity of the 
independent variables can we obtain robust results.

Results of Ridge Regression Estimation

In order to overcome the infl uence of multicollinearity 
problems between variables, ridge regression was 
employed to estimate the regression model. The 
relationship between R square and k was deduced, as 
shown in Fig. 5.

It can be seen from Fig. 5 that when K = 0.02 the 
prediction error is small, the value of R square tends to 
be stable, and the model has a high degree of fi t. Thus, we 
chose K = 0.02 to perform ridge regression in this paper. 
Table 7 shows the results of the ridge regression estimates.

Ridge Regression Estimates

As shown in Table 7, The F-statistic of ridge regression 
was 58.7882, which passed the signifi cance test at the 
5% signifi cance level. In addition, the ridge regression 
coeffi cients of all variables passed a 5% signifi cance level 
test. The VIF test value of each variable is less than 10. R 

square is 0.978, indicating that the overall model fi t very 

well. Thus, the ridge regression equation can be obtained 
from Table 7, as shown in the following equation:

    
(8)

Discussion 

Based on the above results, Eq. (8) indicates the 
direction and contribution of each driving factor to CO2 
emissions. It is apparent that GDP, urbanization level, 
industrialization level, power generation effi ciency, and 
electric power structure have positive effects on CO2 
emissions. On the contrary, the improvement of power 
consumption effi ciency leads to an adverse impact on CO2 
emissions. Among them, power generation effi ciency has 
the most signifi cant impact on CO2 in the power industry. 
The impact of electric power structure, economic growth, 
power consumption effi ciency, urbanization level, and 
industrialization level are decreased in turn.

Power generation effi ciency is the most important 
factor to effect CO2 emissions in the power industry. 
The elastic coeffi cient of the power generation effi ciency 
is 1.410, which means that every 1% growth in power 
generation effi ciency will lead to a 1.410% increase 

Table 5. Results of correlation test.

lnGDP lnURB lnIND lnPCE lnPGE lnEPS

lnGDP 1 - - - - -

lnURB 0.998** 1 - - - -

lnIND -0.542* -0.529* 1 - - -

lnPCE 0.955** 0.938** -0.682** 1 - -

lnPGE -0.990** -0.983** 0.620* -0.983** 1 -

lnEPS -0.587* -0.575* 0.797** -0.709** 0.661** 1

Notes: * Correlation is signifi cant at the 0.05 level.
** Correlation is signifi cant at the 0.01 level.

Fig. 5.  Relationship variation between R2 and K.

Unstandardized 
coeffi cients t-Statistic Sig. VIF

C 0.367 0.021 0.984 -

lnGDP 1.206 1.627 0.142 1179.165

lnURB 0.124 0.065 0.950 795.050

lnIND 0.845 2.077 0.071 4.094

lnPCE -0.872 -1.417 0.194 139.688

lnPGE 0.929 -0.368 0.723 392.026

lnEPS 0.949 1.381 0.205 3.808

R square 0.996 - - -

F-statistic 350.691 - - -

Sig. 0.000 - - -

Table 6. Results of OLS Regression.
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in the power industry’s CO2 emissions. In recent years, 
the increased investment in research on energy-saving 
technology caused power generation standard coal 
consumption continuing decline. In 2014, China’s power 
generation average coal consumption is 295 g/kWh and 
was reduced by 68 g/kWh compared with that in 2000, 
which already reached the world advanced level. Coal 
is the main energy resource of China’s thermal power 
generation [31]. Coal combustion will release a lot of 
carbon dioxide, which is the culprit of CO2 emissions in 
China’s power industry. Therefore, the improvement of 
power generation effi ciency is conducive to reducing coal 
consumption and carbon dioxide emissions.

Optimization of electric power structure has a 
signifi cant effect on the CO2 emissions in the power 
industry. Its elasticity coeffi cient is 1.224, indicating that 
CO2 emissions increase by 1.224% for every one percentage 
point rise in the electric power structure, which represents 
the proportion of thermal power generation to total power 
generation. As we all know, although nuclear power, 
hydropower, wind power, and many other clean energies 
accounted for a slight increase in the proportion of power 
generation in recent years, thermal power generation in 
China occupies a dominant position (accounting for 
75.25% in 2014) owing to resource constraints. The large 
amount of coal consumption will undoubtedly exacerbate 
environmental pollution such as CO2 emissions [32]. 
Therefore, the low proportion of thermal power is more 
conducive to reducing carbon emissions.

Economic growth also contributes a prominent, 
positive impact on CO2 emissions in the power industry. 
The elastic coeffi cient of GDP is 1.082, which implies that 
a GDP increase of one point will result in CO2 emissions 
increasing by 1.082%. At the present stage, export is one 
of the three driving forces of economic growth in China. 
China’s exports are mostly energy and labor-intensive 
products such as chemicals, textiles, and household 
appliances. Production activities of these products 
consume lots of electrical energy and high-polluting 
coal [33]. From 2000 to 2014, average annual power 

consumption was 32.85 billion kWh, which meant that 
with economic development, electric power consumption 
was also increasing. Therefore, economic development 
comes at the cost of large amounts of electric power 
consumption, which will emit large-scale CO2 emissions 
[34].

Power consumption effi ciency, namely the value 
of GDP per unit of kWh, has a signifi cant effect on the 
decline of CO2 emissions in the power industry. Power 
consumption effi ciency is negatively correlated with 
CO2 emissions with a coeffi cient of elasticity of -0.815, 
indicating that a 1% increase in power consumption 
effi ciency results in a reduction of 0.815% in CO2 
emissions. Effi ciency was only 7.35 yuan per kWh in 2000 
but rose to 11.44 yuan per kWh in 2014. This indicates 
that over the past decade, with the development of R&D 
investment in energy-saving, China’s electric power 
consumption effi ciency continues to increase. As we all 
know, the higher the effi ciency of electricity use, the more 
help to save electricity and mitigate CO2 emissions in the 
power industry [35]. In the long run, the improvement of 
power consumption effi ciency is one of the main driving 
forces for reducing power industry CO2 emissions [36].

The level of urbanization mainly refl ects the impact 
of changes in population structure on CO2 emissions in 
the power industry. This effect also has a positive impact. 
The coeffi cient of urbanization level is 0.316, indicating 
that every 1% of the increase in urbanization level will 
lead to an increase of 0.316% in the power industry’s CO2 
emissions. The average annual growth rate of urbanization 
level is 1.27% from 2000 to 2014. The process of 
urbanization has promoted the rapid increase in CO2 
emissions from two aspects. On the one hand, the increase 
in the proportion of urban population directly contributed 
to the growth of spending power, eventually leading to the 
rise in urban electric power consumption. On the other 
hand, urban population growth led to a large amount of 
urban infrastructure construction, which consumes a great 
amount of electricity. In fact, production activities consume 
lots of energy and produce CO2 emissions [37]. Therefore, 

Unstandardized coeffi cients Standard Errors t-Statistic Sig. VIF

C 3.427 3.509 0.976 0.036 0.832

lnGDP 1.082 0.021 14.820 0.001 0.665

lnURB 0.316 0.093 11.604 0.001 0.408

lnIND 0.308 0.467 2.316 0.049 0.317

lnPCE -0.815 0.905 3.399 0.009 0.627

lnPGE 1.410 0.105 -13.416 0.001 0.674

lnEPS 1.224 0.832 1.471 0.018 0.419

R square 0.978 - - - -

F-statistic 58.788 - - - -

Sig. 0.0000035 - - - -

Table 7. Results of ridge regression.
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the rapid growth of the population will inevitably lead to 
an increase in total amount of CO2 emissions in the power 
industry.

Compared with other factors, the impact of the 
industrialization level is relatively slight. This factor 
represents the proportion of secondary industry GDP to 
total GDP. The elastic coeffi cient of the industrialization 
level is 0.308. In recent years, China’s economic growth 
depends mainly on construction and real estate. The 
growth of the construction industry expands the demand 
for electric power, leading to a rapid increase in CO2 
emissions of the power industry [38]. 

Conclusions

Based on the extended STIRPAT model, this paper 
adopted the ridge regression method to analyze the driving 
factors of CO2 emissions in China’s power industry from 
2000 to 2014. The results of empirical analysis showed 
that power generation effi ciency is a decisive factor 
affecting CO2 emissions. The electric power structure 
and economic growth level play signifi cant roles in 
reducing CO2 emissions. Power consumption effi ciency 
has great potential to mitigate CO2 emissions. However, 
urbanization and industrialization levels have a slight 
effect on the power industry’s CO2 emissions. In order 
to effectively control and mitigate the total amount of 
CO2 emissions in China’s power industry and promote 
economic harmonious and sustainable development, 
the central government should take measures from the 
following several aspects:

First, the most important thing is to improve power 
generation effi ciency and reduce the power generation 
standard coal consumption. Power plants should increase 
R&D investment and improve production technology from 
the three aspects of coal, plant power consumption rate, and 
boiler equipment. First of all, for coal preparation, thermal 
power plants should focus on coal quality screening and 
monitoring to ensure that coal is easily made into powder 
and fully combusted to release large amounts of heat. 
Fine pulverized coal not only improves the effi ciency of 
coal use, but also reduces the boiler loss rate. In addition, 
installing and utilizing online coal quality supervision 
devices will be benefi cial to effectively improving coal 
burning effi ciency. Moreover, power plants should 
improve power consumption effi ciency by improving 
major energy-use equipment, such as the introduction 
of a medium-speed pulverizer direct-fi red system and 
cold primary air fan system. Finally, powerplants should 
replace original boilers with circulating fl uidized bed 
boilers to improve thermal effi ciency. The average 
thermal effi ciency of the old boiler units in many power 
plants is only about 60%. Not only is fuel utilization 
low, but air pollution also is serious. Some thermal 
power plants have transformed the old boiler into a 
circulating fl uidized bed boiler, which achieves better 
energy effi ciency along with environmental and eco-
nomic benefi ts.

Second, the government should optimize the electric 
power structure and appropriately reduce the proportion 
of thermal power generation. As we all know, the power 
industry’s CO2 emissions is mainly due to coal combustion 
in thermal power plants. In contrast, hydropower, wind 
power, photovoltaic, nuclear power, and other clean 
energy has little impact on the environment. On the 
one hand, the government should develop hydropower 
resources and expand the scope of the allocation of 
hydropower resources. At the same time, wind and solar 
energy resources should be widely developed. In addition, 
the government should also vigorously promote the layout 
of eastern coastal nuclear power. On the other hand, 
the government should strictly control the planning and 
construction of thermal power plants and appropriately 
promote cogeneration and low calorifi c value coal power 
generation projects. During the 13th Five-Year Plan, China 
will cancel and delay thermal power construction projects 
by more than 150 million kilowatts. By 2020, the national 
thermal power installed capacity will be expected to 
control within 1.1 billion kilowatts.

Third, the government should insist on sustainable 
development and accelerate the transformation of 
economic growth. The economic development model 
should be transformed from high energy consumption and 
low effi ciency modes of economic growth to knowledge-
intensive and technology-intensive modes of economic 
growth. Moreover, the government should promote 
economic and environmental coordination and sustainable 
development. Only then can enterprises reduce energy 
consumption and CO2 emissions while ensuring economic 
development.

Fourth, power consumption effi ciency should be 
effectively improved through technical, fi nancial, and 
incentive policies and a smart grid. Major enterprises 
should learn advanced power technology from developed 
countries, narrowing the technical differences. The 
high power-consuming enterprises should also develop 
energy-saving technologies, update electrical equipment, 
and improve terminal power effi ciency. Moreover, the 
National Development and Reform Commission should 
formulate an appropriate electricity price ladder through 
policy measures to make high-power enterprises save 
electricity and improve power consumption effi ciency. 
Overall, the government should build a smart grid. The 
smart grid is a collection of information technology, 
communications technology, power grid technology, and 
a series of advanced technology set in a power grid, with 
reliable, self-healing, economic, compatible, integration, 
and security features. A smart grid for users and businesses 
is a win-win choice. Users can freely choose high-quality 
electricity based on power information. The power grid 
on the user information collection will help to strengthen 
power management, reduce power loss, provide users with 
diversity services, and change the power grid enterprise 
economic development.

Finally, urbanization and industrialization levels 
played relatively minor but important positive effects on 
the power industry’s CO2 emissions, compared with the 
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four main contributing factors (e.g., power generation 
effi ciency, electric power structure, economic growth, and 
power consumption effi ciency). Moreover, the positive 
effects of urbanization on CO2 emission growth were 
stronger than those of industrialization. The rapid growth 
of living standards and consumption levels of urban 
residents will put continuously growing demands on the 
production and supply of electricity and heating power. 
Therefore, decreased coal use and increased non-fossil 
energy consumption for power generation will be of great 
help for CO2 emissions abatement. In addition, it is crucial 
to increase environmental awareness of residents and 
enterprises so that they will take appropriate actions on 
reducing their carbon footprint in their daily lives and their 
production activities during the process of urbanization 
and industrialization. The government should also catch 
particular attention for the balance between economic 
benefi t and CO2 emissions mitigation pressure.
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